
CSE 210: Computer Architecture

Lecture 7: Negative Numbers, Overflow

Stephen Checkoway

Oberlin College

Oct. 18, 2021

Slides from Cynthia Taylor

1

Announcements

• Problem Set 2 due Friday 23:59

• Lab 1 due Sunday 23:59

• Office Hours Tuesday 13:30 – 14:30

How do we indicate a negative number?

• Sign and magnitude

• Ones’ Compliment

• Two’s Compliment

Ones’ Complement

• To make a number negative, just flip all its bits!

• Need to know how many bits: -5 in

– 4 bits: 0101 => 1010

– 8 bits: 00000101 => 11111010

A byte representing -6
10

in Ones’ Complement is

A. 00000110

B. 10000110

C. 11111001

D. 11110110

E. None of the above

Ones’ complement

• Two zeros: 00000000 and 11111111 (in 8 bits)

• Addition:

– Perform normal n-bit addition

– Add the carryout bit back to the result

Two’s Complement

• Flip all the bits and add 1

• For n bits, the unsigned version of –x = 2n – x

• Can represent –128 to 127 in 8 bits
– In n bits, can represent –2n–1 to 2n–1 – 1

• Only one zero (00000000 in 8 bits)

• Used in modern computers

-6 in Two’s Complement

A. 11110110

B. 11111001

C. 11111010

D. 11111110

E. None of the above

Two’s Complement: 11111101
2

= ?
10

A. -2

B. -3

C. -4

D. -5

E. None of the above

The negation of 11110001
2

is _____
2

A. 00001110

B. 00001111

C. 00011110

D. 01110001

E. None of the above

Addition and Subtraction

• Positive and negative numbers are handled in the same way.

• The carry out from the most significant bit is ignored.

• To perform the subtraction A − B, compute A + (two's

complement of B)

For n bits, the sum of a number and its negation will

be

A. 0
n-1

…0
0

B. 1
n-1

0
n-2

…0
0

C. 1
n-1

…1
0

D. It will vary

E. None of the above

11110110
2

+ 00001100
2

= ?
2

A. 00000010

B. 00001100

C. 11110010

D. 11111110

E. None of the above

1111 + 1000 = __
2

A. 0111

B. 1000

C. 1111

D. 0000

E. None of the above

Overflow

• Overflow occurs when an addition or subtraction results in a

value which cannot be represented using the number of bits

available.

• In that case, the algorithms we have been using produce

incorrect results.

Is overflow a problem in modern programs?

A. Nope, we have totally solved this business!

B. Yep, still a problem.

Handling Overflow

• Hardware can detect when overflow occurs

• Software may or may not check for overflow

– Java guarantees two’s complement behavior!

– In C, overflow is “undefined behavior” meaning, it can do anything

– In Rust, overflow is checked in debug builds but not optimized builds!

How To Detect Overflow

• On an addition, an overflow occurs if and only if the carry into

the sign bit differs from the carry out from the sign bit.

• Overflow occurs if adding two negative numbers produces a

positive result or if adding two positive numbers produces a

negative result.

Will 01111111
2

+ 00000101
2

result in overflow?

A. Yes

B. No

C. It depends

Unsigned Numbers

• Some types of numbers, such as memory addresses, will never

be negative

• Some programming languages reflect this with types such as

“unsigned int”, which only hold positive numbers

– uint32_t in C99

– u32 in Rust

– Java only has signed types

• In an unsigned byte, values will range from 0 to 255

In MIPS

• add, sub, addi instructions cause exceptions on (signed)

overflow

• addu, subu, addiu instructions do not

• Rationale: In C, unsigned types never cause overflow, they’re

defined to wrap (produce a value modulo 2n)

• In practice: Since overflow is undefined behavior, it is assumed

to never happen so compilers always use addu/subu/addiu

Reading

• Next lecture: How Instructions Are Represented

– Section 2.5

• Problem Set 2 due Friday

• Lab 1 due Sunday

24

