CSE 210: Computer Architecture
Lecture 7: Negative Numbers, Overflow

Stephen Checkoway
Oberlin College

Oct. 18, 2021
Slides from Cynthia Taylor



Announcements

* Problem Set 2 due Friday 23:59

 Lab 1 due Sunday 23:59

e Office Hours Tuesday 13:30 - 14:30



How do we indicate a negative number?

* Sign and magnitude
* Ones’ Compliment

 Two’s Compliment



Ones’ Complement

* To make a number negative, just flip all its bits!

* Need to know how many bits: -5 in
— 4 bits: 0101 => 1010
— 8 bits: 00000101 => 11111010



A byte representing -6, in Ones’ Complement is
. 00000110
. 10000110
. 11111001
. 11110110

. None of the above



Ones’ complement

* Two zeros: 00000000 and 11111111 (in 8 bits)

e Addition:
— Perform normal n-bit addition
— Add the carryout bit back to the result



Two’s Complement
Flip all the bits and add 1
For n bits, the unsigned version of —x = 2" — x

Can represent =128 to 127 in 8 bits
— In n bits, can represent —2"1to 2" 1 -1

Only one zero (00000000 in 8 bits)

Used in modern computers



-6 in Two’s Complement

. 11110110

. 11111001

. 11111010

. 11111110

. None of the above



Two’s Complement: 11111101, =7,

. None of the above



The negation of 11110001, is

. 00001110

. 00001111

. 00011110

. 01110001

. None of the above




Addition and Subtraction

* Positive and negative numbers are handled in the same way.

* The carry out from the most significant bit is ignored.

* To perform the subtraction A - B, compute A + (two's
complement of B)



For n bits, the sum of a number and its negation will
be

A. 0 ,..0,
B. 1,0 ...0,

C. 1,.1,

D. It will vary

E. None of the above



11110110, + 00001100, = ?,

. 00000010

. 00001100

. 11110010

. 11111110

. None of the above



1111 +1000=

. 0111

. 1000

. 1111

. 0000

. None of the above



Overflow

e Overflow occurs when an addition or subtraction results in a
value which cannot be represented using the number of bits
available.

* |n that case, the algorithms we have been using produce
incorrect results.



Is overflow a problem in modern programs?

A. Nope, we have totally solved this business!

B. Yep, still a problem.



Handling Overflow

e Hardware can detect when overflow occurs

e Software may or may not check for overflow
— Java guarantees two’s complement behavior!
— In C, overflow is “undefined behavior” meaning, it can do anything
— In Rust, overflow is checked in debug builds but not optimized builds!



How To Detect Overflow

* On an addition, an overflow occurs if and only if the carry into
the sign bit differs from the carry out from the sign bit.

* Overflow occurs if adding two negative numbers produces a
positive result or if adding two positive numbers produces a
negative result.



Will 01111111, + 00000101, result in overflow?

A. Yes
B. No

C. It depends



Unsigned Numbers

 Some types of numbers, such as memory addresses, will never
be negative

 Some programming languages reflect this with types such as
“unsigned int”, which only hold positive numbers
— uint32_tin C99
— u32 in Rust
— Java only has signed types

* |n an unsigned byte, values will range from 0 to 255



In MIPS

add, sub, addi instructions cause exceptions on (signed)
overflow

addu, subu, addiu instructions do not

Rationale: In C, unsigned types never cause overflow, they’re
defined to wrap (produce a value modulo 2")

In practice: Since overflow is undefined behavior, it is assumed
to never happen so compilers always use addu/subu/addiu



Reading

* Next lecture: How Instructions Are Represented
— Section 2.5

* Problem Set 2 due Friday

 Lab 1 due Sunday



